THE EFFECT OF BETA-GLUCANS ON IMMUNITY IN DIFFERENT SPECIES

PRESENTING THE STUDY

A paper presented in the journal of:

Comparative immunology microbiology & infectious diseases

Brazil

USA

Undertaken by researchers from 2 American countries

IMMUNITY, IT'S ORGANISATION

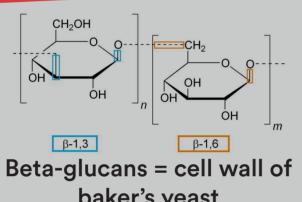
INNATE IMMUNITY

- Immediate
- No "learning" necessary
- Non-specific response to a pathogen

Innate immunity cells absorb and break down pathogens by phagocytosis

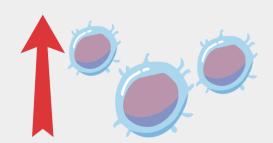
ADAPTIVE (ACQUIRED) IMMUNITY

- Put into place slowly
- It must learn to recognise pathogens
- Highly specific response



The specific functions of innate immunity cells are activated

Question: Is the immunostimulating effect of beta-glucans the same in different vertebrate species?


baker's yeast (Saccharomyces cerevisiae)

METHOD EMPLOYED Mouse Dog Piglet Chick

Supplementation with 25mg/kg/bodyweight of beta-glucans daily for 28 days

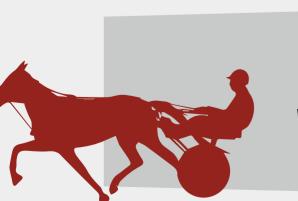
THE FINDINGS

INCREASED INNATE IMMUNE RESPONSE.

Increase in the production of IL2 → molecule which stimulates both innate and adaptive immune cells.

INCREASED PHAGOCYTIC CAPACITY for:

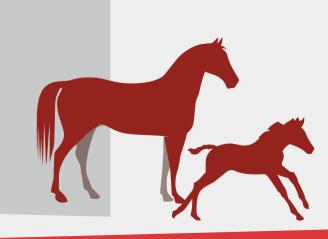
Neutrophils, antibacterial agents



• Monocytes, precursors of macrophages, which are very active on the phagocytosis front, but also regulate adaptive immunity.

INCREASED CAPACITY FOR PRODUCING ANTIBODIES.

The production of <u>antibodies</u> following the injection of an unknown, thus potentially dangerous, molecule (antigen), is increased.



AS A REMINDER

In the horse, beta-glucans stimulated:

Vaccination responses in trotters in training

Colostrum quality in broodmares

CONCLUSION